分析数据的6种方法!千万不要错过!——九数云BI

标签: 分析数据 | 发布时间: 2024-09-10 21:05:54

数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程,下面让我们和九数云一起来看看分析数据有哪些方法吧!

在当今这个数字化时代中中,数据分析已经成为了企业获取竞争优势的关键工具。下面小编为大家带来了几种常见的分析数据的方法,不会的朋友不要错过哦!

1. 分析数据的方法:描述性统计分析

分析数据的6种方法!千万不要错过!——九数云BI插图

描述性统计分析是统计学中的一个分支,其目的是通过概括和总结数据集的主要特征,来提供对数据的直观理解。这种分析方法主要关注数据的集中趋势、分散程度和分布形状等基本统计特征。

描述性统计分析通常通过以下几个方面展现数据:

  • 中心位置测度:描述数据的集中趋势。常用的统计量包括均值(平均值)、中位数和众数。
  • 离散程度测度:衡量数据的分散或离散程度,反映数据的波动。常见的统计量有标准差、方差、极差等。
  • 数据分布:描述数据的分布形状,是对数据集整体结构的概括。包括正态分布、偏态分布、峰态等。
  • 频数和频率:统计数据集中各个数值或范围出现的次数,以及其在整体中所占的比例。
  • 描述性图表:利用直方图、箱线图、散点图等可视化手段展示数据的分布和规律,使人们更容易理解数据。

2. 分析数据的方法:探索性数据分析(EDA)

探索性数据分析是由统计学家John W. Tukey提出的一种数据分析方法,旨在通过绘图和统计手段,深入理解数据集的结构、特征和模式,发现潜在的趋势和异常,为后续深入分析和建模提供基础。EDA的目标不是进行严格的推论统计,而是对数据进行初步的、直观的、全面的探索。

分析数据的6种方法!千万不要错过!——九数云BI插图1

EDA的主要特点包括:

  • 可视化数据:通过绘制直方图、散点图、箱线图等可视化图表,以直观的方式展示数据的分布、关系和形态。
  • 统计描述:利用统计学的描述性统计量,如均值、中位数、标准差等,对数据的中心趋势和分散程度进行描述。
  • 相关性分析:通过计算变量之间的相关系数或绘制相关矩阵,揭示变量之间的关系。
  • 分布形态分析:判断数据的分布形态,包括正态性、偏度和峰度等,为后续建模选择适当的统计方法提供参考。

3.分析数据的方法:假设检验和推论统计学

推论统计学是统计学的一个分支,主要关注从样本中得出关于总体的信息。它通过对样本统计量的分析和推断,帮助我们了解总体的性质、做出预测或者对总体参数进行推断。

分析数据的6种方法!千万不要错过!——九数云BI插图2

推论统计学主要包括两个方面:

1)参数估计:利用样本数据估计总体参数的值,包括点估计和区间估计。点估计给出一个单一值作为总体参数的估计,而区间估计则提供参数估计的区间,表示我们对总体参数的不确定性。

2)假设检验:假设检验是统计学中一种常用的方法,用于对某个关于总体参数的假设进行检验。该方法基于样本数据,通过对比观察到的统计值与在零假设下的理论期望值之间的差异,来评估是否可以拒绝零假设。假设检验通常包括以下步骤:

示例中提到的数据分析模板分享给大家——

https://s.fanruan.com/x3k5k
零基础快速上手,还能根据需求进行个性化修改哦

  • 设立假设:提出一个关于总体参数的零假设(H0)和备择假设(H1)。
  • 选择显著性水平:确定显著性水平(通常为0.05),表示在该水平下,如果观察到的差异足够大,就拒绝零假设。
  • 收集样本数据:从总体中抽取样本,并计算样本统计量。
  • 计算检验统计量:根据样本数据计算一个检验统计量,该统计量的分布在零假设成立的条件下是已知的。
  • 做出决策:将计算得到的检验统计量与显著性水平相比较,如果小于显著性水平,则拒绝零假设;反之,则接受零假设。

4. 分析数据的方法:回归分析

回归分析是一种统计学方法,用于研究自变量与因变量之间的关系。通过建立数学模型,回归分析旨在揭示自变量的变化如何影响因变量的变化,以及这种影响的程度和方向。

分析数据的6种方法!千万不要错过!——九数云BI插图3

回归分析可分为两大类:

  • 简单线性回归:只有一个自变量时的回归分析。回归方程为 Y = β₀ + β₁X + ε。
  • 多元线性回归:当存在多个自变量时的回归分析。回归方程为 Y = β₀ + β₁X₁ + β₂X₂ + ... + ε。

5. 分析数据的方法:聚类分析

聚类分析是一种无监督学习方法,旨在将数据集中的观察值划分为相似的组,这些组被称为簇(Cluster)。聚类的目标是使同一簇内的观察值相似度较高,而不同簇之间的相似度较低。通过聚类,我们可以发现数据中的内在结构、识别模式,并将相似的观察值划分为同一组,有助于深入理解数据。

分析数据的6种方法!千万不要错过!——九数云BI插图4

聚类分析在许多领域中都有广泛应用,例如:

  • 市场分析:根据消费者行为将市场细分,以更好地了解目标市场。
  • 生物学:将基因表达数据聚类为具有相似功能的基因群。
  • 图像分析:将相似的图像聚类到一起,以便进行图像检索和分类。
  • 社交网络分析:根据用户的行为模式将社交网络中的用户进行分组。

6. 分析数据的方法:相关分析

相关分析旨在发现数据集中不同项之间的关联关系。这些关联规则描述了一个事件或者集合中出现的模式,指出在给定一些条件下,其他条件也可能会发生。常见的应用包括购物篮分析、交叉销售、网络流量分析等。

分析数据的6种方法!千万不要错过!——九数云BI插图5

在相关分析中,有两个关键的指标:

  • 支持度(Support):衡量一个规则在数据集中出现的频率。支持度高表示规则在数据集中出现的频率较高。
  • 置信度(Confidence):衡量规则的可信度,即在条件出现的情况下,结果也会出现的概率。置信度高表示规则较为可靠。

相关分析的经典算法包括:

  • Apriori算法:基于先验原则,从频繁项集(在数据集中频繁出现的项的集合)逐步生成关联规则。
  • FP-growth算法:使用一种称为“频繁模式树”的数据结构,通过递归地分解数据集,发现频繁项集。

相关分析在商业和科学领域中得到了广泛的应用。例如,在零售业,通过分析顾客的购物篮,商家可以制定更有效的促销策略;在医学研究中,相关分析可以帮助发现患病的模式或者药物的副作用等。

当然,如果你觉得上述操作太复杂,公式太难,也可以尝试这款自助式的数据分析软件——九数云BI,它是数据分析行业的翘楚帆软旗下的云端SAAS数据分析可视化产品,专为百万行以上数据处理而生。它作为一款0代码数据分析软件,您只需要上传数据,通过拖拽就可以生成数据分析报表与看板,获取有效信息,提升数据分析的效率。



上一篇:
下一篇:
相关内容