分析必看!rfm分析法是什么?怎么用?——九数云BI
RFM作为很传统的数据分析模型,如何才能不局限于RFM,首先,我们需要和九数云一起了解rfm分析法是什么。
rfm分析法是什么?RFM分析是一种常用的客户关系管理工具,为了更好地进行客户管理,下面让我们一起来看看吧。
很多同学表示想看RFM,今天它来了。RFM是很传统的数据分析模型,几乎所有文章都会提到它,然而市面上流传的各种乱用、错用也非常多。今天我们系统讲一下。
一、rfm分析法是什么:基本原理
RFM是三个单词的缩写:最近一次消费时间 (Recency),取数的时候一般取最近一次消费记录到当前时间的间隔,比如7天、30天、90天未到店消费。直观上,一个用户太久不到店消费,肯定是有问题,得做点什么事情。很多公司的用户唤醒机制都是基于这个制定的。
一定时间内消费频率 (Frequency),取数时,一般是取一个时间段内用户消费频率。比如一年内有多少个月消费,一个月内有多少天到店等等。直观上,用户消费频率越高越忠诚。很多公司的用户激励机制都是基于这个制定的,买了一次还想让人家买第二次。
一定时间内累计消费金额(Monetary) ,取数时,一般是取一个时间段内用户消费金额。比如一年内有多少消费金额。直观上,用户买的越多价值就越大。很多公司的VIP机制是基于这个指定的,满10000银卡,满20000金卡一类。
所以,即使单独看这三个维度,都是很有意义的。当然,也有把三个维度交叉起来看的(如下图)。
因为RFM与时间有关,因此很多同学在取数的时候会纠结时间怎么分。严格来说,越柴米油盐,消费频次本身越高的业务,取的时间应该越短。最典型的就是生鲜,人天天都要吃饭,7天不来可能就有问题。普通的快消品零售可能取30天,类似服装百货零售可能取90天。
当然,更多的做法是按月取。比如R按月取,F、M算最近一年内的数值。这样做单纯是因为比较方便理解而已。
RFM本质上是一种用三个分类维度,找判断标准方法。通过三个维度的组合计算,能判定出用户的好坏,然后采取对应措施。
RFM的真正意义,在于:这是一种从交易数据反推用户价值的方法,因此可行性非常高!要知道:做数据分析的最大瓶颈是数据采集,而只要是个正常企业,交易数据是肯定有的。
因此只要企业建立了用户ID统一认证机制,就能将用户ID与交易数据关联起来,就能用RFM来分析用户了。即使没有埋点、没有网站、没有基础信息也能做,简直是方便好用的神器。
当然,所有方便好用的工具,都自带一些不足,RFM模型也是如此。
二、rfm分析法是什么:最大短板
RFM最大的短板,在于用户ID统一认证。不要小看这几个字,在相当多的企业里非常难实现。比如你去超市、连锁店、门店买东西,往往收银小妹会机械的问一句:有会员卡吗?如果回答没有,她也放你过去了。导致的结果,是线下门店的订单,一般有70%-90%无法关联到用户ID,进而导致整个用户数据是严重缺失的,直接套RFM很容易误判用户行为。
至于用户一人多张会员卡轮流薅羊毛,多个用户共同一张VIP卡拿最大折扣,店员自己用亲戚的卡把无ID订单的羊毛给薅了之类的事,更是层出不穷,而且在实体企业、互联网企业都普遍存在。
所以做RFM模型的时候,如果你真看到111类用户,别高兴太早,十有八九是有问题的。现在的企业往往在天猫、京东、自有微商城、有赞等几个平台同时运作,更加大了统一认证的难度。如果没有规划好,很容易陷入无穷无尽的补贴大坑。
二、rfm分析法是什么:软件选择
尽管传统典型的RFM分析法,现在依旧在被广泛地使用,不过目前最新的RFM模型中,分箱和客户分类的过程都可以由工具自动完成,比如九数云BI,它支持百万行数据实时处理实时预览,拖拽式生成图表和看板,能够帮助用户快速提高数据大局观,优化业务流程并提升效率。
上一篇: 深度解读RFM模型,让你轻松超过99%的人!——九数云BI
下一篇: 如何提高顾客复购率?超超超实用的方法!——九数云BI